Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Front Pharmacol ; 15: 1375993, 2024.
Article in English | MEDLINE | ID: mdl-38659591

ABSTRACT

Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.

2.
Cancer Res Commun ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651817

ABSTRACT

The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by magnetic resonance imaging (MRI). However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAMs) are abundant in GBM microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2-polarization. To find an immunological signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 GBM patients using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and Tregs in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages co-cultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Co-cultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem-cells. Co-cultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and was accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring.

3.
Oncol Res ; 31(4): 423-436, 2023.
Article in English | MEDLINE | ID: mdl-37415743

ABSTRACT

Scaffold proteins are crucial regulators of signaling networks, and their abnormal expression may favor the development of tumors. Among the scaffold proteins, immunophilin covers a unique role as 'protein-philin' (Greek 'philin' = friend) that interacts with proteins to guide their proper assembly. The growing list of human syndromes associated with the immunophilin defect underscores the biological relevance of these proteins that are largely opportunistically exploited by cancer cells to support and enable the tumor's intrinsic properties. Among the members of the immunophilin family, the FKBP5 gene was the only one identified to have a splicing variant. Cancer cells impose unique demands on the splicing machinery, thus acquiring a particular susceptibility to splicing inhibitors. This review article aims to overview the current knowledge of the FKBP5 gene functions in human cancer, illustrating how cancer cells exploit the scaffolding function of canonical FKBP51 to foster signaling networks that support their intrinsic tumor properties and the spliced FKBP51s to gain the capacity to evade the immune system.


Subject(s)
Neoplasms , Tacrolimus Binding Proteins , Humans , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Neoplasms/genetics , Signal Transduction
4.
Cell Death Dis ; 14(2): 116, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781840

ABSTRACT

FKBP51 plays a relevant role in sustaining cancer cells, particularly melanoma. This cochaperone participates in several signaling pathways. FKBP51 forms a complex with Akt and PHLPP, which is reported to dephosphorylate Akt. Given the recent discovery of a spliced FKBP51 isoform, in this paper, we interrogate the canonical and spliced isoforms in regulation of Akt activation. We show that the TPR domain of FKBP51 mediates Akt ubiquitination at K63, which is an essential step for Akt activation. The spliced FKBP51, lacking such domain, cannot link K63-Ub residues to Akt. Unexpectedly, PHLPP silencing does not foster phosphorylation of Akt, and its overexpression even induces phosphorylation of Akt. PHLPP stabilizes levels of E3-ubiquitin ligase TRAF6 and supports K63-ubiquitination of Akt. The interactome profile of FKBP51 from melanoma cells highlights a relevant role for PHLPP in improving oncogenic hallmarks, particularly, cell proliferation.


Subject(s)
HSP90 Heat-Shock Proteins , Melanoma , Phosphoprotein Phosphatases , Proto-Oncogene Proteins c-akt , Tacrolimus Binding Proteins , Humans , Melanoma/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Ubiquitination , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
5.
J Cell Biochem ; 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36645880

ABSTRACT

FKBP51 is constitutively expressed by immune cells. As other FKBP family members, FKBP51 acts as a coreceptor for the natural products FK506 and rapamycin, which exhibit immunosuppressive effects. However, little is known about the intrinsic role of this large FKBP in the primary function of lymphocytes, that is, the adaptive immune response against foreign antigens, for example, pathogens. This paper aimed to investigate whether FKBP51 expression was modulated during lymphocyte activation. Moreover, as we recently identified a splicing isoform of FKBP51, namely FKBP51s, we also measured this splice protein, along with the canonical one, at different times of a peripheral blood mononuclear cell culture stimulated via T cell receptor. Our results show that the two FKBP51 isoforms were alternatively induced during the proliferative burst. Canonical FKBP51 increased in the time window between 48 and 96 h and its expression levels correlated with cyclin D levels. FKBP51s transiently increased earlier, at 24-36 h to reappearing later, at 120 h, when cyclin D expression returned at resting levels and proliferation ceased. Interestingly, within these two specific timeframes, FKBP51s accumulated in the nucleus. Here FKBP51s colocalized with the Foxp3 transcription factor at 36 h. Regulatory T cell (Treg) counts significantly decreased when FKBP51s was downmodulated. The coculture suppression assay suggested that FKBP51s supports the suppressive capability of Tregs. At 120 h, chromatin immunoprecipitation experiments found FKBP51s linked to CCND1 gene, suggesting a possible effect on gene transcription regulation, as previously demonstrated in melanoma. In conclusion, our study shows that FKBP5 isoforms are upregulated during lymphocyte activation, albeit on different timeframes. The activation of canonical FKBP51 coincides with proliferation hallmarks; FKBP5 splicing occurs early to sustain Treg development and late when proliferation ceases.

6.
Eur J Ophthalmol ; 33(4): NP1-NP4, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35679086

ABSTRACT

PURPOSE: To report the unique case of a pair of phenotypically discordant monozygotic twins, with one of them affected by unilateral Coats disease. CASE REPORT: Both patients underwent a complete ophthalmologic evaluation and were genetically tested with whole-exome sequencing (WES). Any known or unknown potential genetic determinant of Coats disease wasn't found. CONCLUSION: It may suggest a non-genetic etiology for this disorder. This represents, to the best of our knowledge, the first case of genetic analysis of monozygotic twins, one of whom is affected by Coats disease. Further studies are warranted, including performing genetic analysis directly on retinal biopsy tissue.


Subject(s)
Retinal Telangiectasis , Twins, Monozygotic , Humans , Twins, Monozygotic/genetics , Retinal Telangiectasis/diagnosis , Retinal Telangiectasis/genetics , Exome Sequencing , Diseases in Twins/diagnosis , Diseases in Twins/genetics , Retina
7.
Eur J Ophthalmol ; 33(5): NP101-NP104, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36128764

ABSTRACT

PURPOSE: To present two consecutive cases of Central Retinal Artery Occlusion (CRAO) with unusual Optical Coherence Tomography (OCT) presentation of Hyperreflective Spots (HRS) in the posterior vitreous. CASE REPORT: The first patient was a 59 years-old male who developed CRAO in the post-operative period after aortic valve replacement. OCT scans revealed the presence of many HRS in the posterior vitreous, remarkably decreased in number at two months follow-up. The second patient was a 74-year-old male who developed CRAO after arterial chemoembolization for recurrent hepatocellular carcinoma. OCT scans showed again the presence of hyperreflective spots in the posterior vitreous and their reduction at two months follow-up with inner retinal atrophy as the final outcome in both cases. CONCLUSIONS: HRS in the posterior vitreous have been described in inflammatory eye conditions such as uveitis, diabetic macular edema, post cataract surgery, and considered a clinical sign of inflammation. To our knowledge, the combination of CRAO and HRS has not been previously reported. The number of HRS seems to decrease over time, suggesting a role for inflammatory response in the acute stage of CRAO. A similar pathogenic process is known to occur during cerebral ischemia, where the inflammatory response may exacerbate brain injury and post-ischemic damage.


Subject(s)
Diabetic Retinopathy , Macular Edema , Retinal Artery Occlusion , Humans , Male , Middle Aged , Aged , Macular Edema/diagnosis , Fluorescein Angiography/methods , Retinal Artery Occlusion/diagnosis , Retinal Artery Occlusion/etiology , Tomography, Optical Coherence/methods
8.
Front Mol Biosci ; 9: 1010984, 2022.
Article in English | MEDLINE | ID: mdl-36425656

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, whose presentation and clinical course are highly variable. Identification of novel prognostic factors may contribute to improving the CLL classification and providing indications for treatment options. The zinc finger protein ZNF224 plays a key role in cell transformation, through the control of apoptotic and survival pathways. In this study, we evaluated the potential application of ZNF224 as a novel marker of CLL progression and therapy responsiveness. To this aim, we analyzed ZNF224 expression levels in B lymphocytes from CLL patients at different stages of the disease and in patients showing different treatment outcomes. The expression of ZNF224 was significantly increased in disease progression and dramatically decreased in patients in complete remission after chemotherapy. Gene expression correlation analysis performed on datasets of CLL patients revealed that ZNF224 expression was well correlated with that of some prognostic and predictive markers. Moreover, bioinformatic analysis coupled ZNF224 to NF-κB pathway, and experimental data demonstrated that RNA interference of ZNF224 reduced the activity of the NF-κB survival pathway in CLL cells. Consistently with a pro-survival role, ZNF224 knockdown raised spontaneous and drug-induced apoptosis and inhibited the proliferation of peripheral blood mononuclear cells from CLL patients. Our findings provide evidence for the involvement of ZNF224 in the survival of CLL cells via NF-κB pathway modulation, and also suggest ZNF224 as a prognostic and predictive molecular marker of CLL disease.

9.
Antioxidants (Basel) ; 11(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009263

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is the most common and aggressive OC histotype. Although initially sensitive to standard platinum-based chemotherapy, most HGSOC patients relapse and become chemoresistant. We have previously demonstrated that platinum resistance is driven by a metabolic shift toward oxidative phosphorylation via activation of an inflammatory response, accompanied by reduced cholesterol biosynthesis and increased uptake of exogenous cholesterol. To better understand metabolic remodeling in OC, herein we performed an untargeted metabolomic analysis, which surprisingly showed decreased reduced glutathione (GSH) levels in resistant cells. Accordingly, we found reduced levels of enzymes involved in GSH synthesis and recycling, and compensatory increased expression of thioredoxin reductase. Cisplatin treatment caused an increase of reduced GSH, possibly due to direct binding hindering its oxidation, and consequent accumulation of reactive oxygen species. Notably, expression of the cysteine-glutamate antiporter xCT, which is crucial for GSH synthesis, directly correlates with post-progression survival of HGSOC patients, and is significantly reduced in patients not responding to platinum-based therapy. Overall, our data suggest that cisplatin treatment could positively select cancer cells which are independent from GSH for the maintenance of redox balance, and thus less sensitive to cisplatin-induced oxidative stress, opening new scenarios for the GSH pathway as a therapeutic target in HGSOC.

10.
Graefes Arch Clin Exp Ophthalmol ; 260(11): 3455-3464, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35612613

ABSTRACT

PURPOSE: To assess the clinical and retinal imaging features of patients in whom retinal vascular occlusion (VO) had developed in temporal associations with COVID-19 vaccination. METHODS: In this retrospective case series, all consecutive adult patients with new onset VO within 6 weeks of vaccination against COVID-19 were included in the study between May 1 and October 31, 2021. All patients had a systemic medical health assessment, full ophthalmic evaluation, and complete fundus imaging. RESULTS: Fifteen eyes of VO (14 patients) after COVID-19 vaccinations were identified. The median time between vaccination and symptoms onset was 14 days (range 7-42 days). The mean best-corrected visual acuity (BCVA) was 20/55 with a range of 20/20 to 20/200. Eleven of 15 eyes (73.3%) had visual acuity improvement after intravitreal treatment at 60-90 days (range, 45-105 days) from the presentation. Four of 5 cases without systemic risk factors for VO had a mean BCVA > 20/32 at presentation and > 20/25 at the latest evaluation. Between May 1 and October 31, 2021, a temporal association was found between the 15 reported cases and COVID-19 vaccination out of a total of 29 VO (p = 0.05). The incidence of VO was higher in the considered period compared to the equivalent 6-month period in 2019 (1.17% vs 0.52%, respectively; p = 0.0134). CONCLUSIONS: Retinal vascular occlusion with different grades of severity are reported in temporal association with COVID-19 vaccination. The exact pathogenic mechanism needs to be further studied. No certain causal relationship can be established from this case series.


Subject(s)
COVID-19 Vaccines , COVID-19 , Retinal Diseases , Retinal Vein Occlusion , Adult , Humans , Angiogenesis Inhibitors , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Fluorescein Angiography , Intravitreal Injections , Retinal Diseases/drug therapy , Retinal Vein Occlusion/etiology , Retinal Vein Occlusion/complications , Retrospective Studies , SARS-CoV-2 , Tomography, Optical Coherence , Treatment Outcome , Vaccination
11.
PLoS One ; 17(3): e0266090, 2022.
Article in English | MEDLINE | ID: mdl-35358273

ABSTRACT

We herein report an innovative antisense approach based on Peptide Nucleic Acids (PNAs) to down-modulate CD5 expression levels in chronic lymphocytic leukemia (CLL). Using bioinformatics tools, we selected a 12-mer tract of the CD5 mRNA as the molecular target and synthesized the complementary and control PNA strands bearing a serine phosphate dipeptide tail to enhance their water solubility and bioavailability. The specific recognition of the 12-mer DNA strand, corresponding to the target mRNA sequence by the complementary PNA strand, was confirmed by non-denaturing polyacrylamide gel electrophoresis, thermal difference spectroscopy, circular dichroism (CD), and CD melting studies. Cytofluorimetric assays and real-time PCR analysis demonstrated the downregulation of CD5 expression due to incubation with the anti-CD5 PNA at RNA and protein levels in Jurkat cell line and peripheral blood mononuclear cells from B-CLL patients. Interestingly, we also observed that transfection with the anti-CD5 PNA increases apoptotic response induced by fludarabine in B-CLL cells. The herein reported results suggest that PNAs could represent a potential candidate for the development of antisense therapeutic agents in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Peptide Nucleic Acids , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukocytes, Mononuclear , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Peptide Nucleic Acids/chemistry , RNA, Messenger/genetics
12.
Front Cell Dev Biol ; 9: 730726, 2021.
Article in English | MEDLINE | ID: mdl-34604232

ABSTRACT

Tumor interstitial fluid (TIF) surrounds and perfuses tumors and collects ions, metabolites, proteins, and extracellular vesicles secreted by tumor and stromal cells. Specific metabolites, accumulated within the TIF, could induce metabolic alterations of immune cells and shape the tumor microenvironment. We deployed a metabolomic approach to analyze the composition of melanoma TIF and compared it to the plasma of C57BL6 mice, engrafted or not with B16-melanoma cells. Among the classes of metabolites analyzed, monophosphate and diphosphate nucleotides resulted enriched in TIF compared to plasma samples. The analysis of the effects exerted by guanosine diphosphate (GDP) and uridine diphosphate (UDP) on immune response revealed that GDP and UDP increased the percentage of CD4+CD25+FoxP3- and, on isolated CD4+ T-cells, induced the phosphorylation of ERK, STAT1, and STAT3; increased the activity of NF-κB subunits p65, p50, RelB, and p52; increased the expression of Th1/Th17 markers including IFNγ, IL17, T-bet, and RORγt; and reduced the expression of IL13, a Th2 marker. Finally, we observed that local administrations of UDP in B16-engrafted C57BL6 mice reduced tumor growth and necrotic areas. In addition, UDP-treated tumors showed a higher presence of MHCIIhi tumor-associated macrophage (TAM) and of CD3+CD8+ and CD3+CD4+ tumor-infiltrating T-lymphocytes (TILs), both markers of anti-tumor immune response. Consistent with this, intra-tumoral gene expression analysis revealed in UDP-treated tumors an increase in the expression of genes functionally linked to anti-tumor immune response. Our analysis revealed an important metabolite acting as mediator of immune response, which could potentially represent an additional tool to be used as an adjuvant in cancer immunotherapy.

13.
Front Cell Dev Biol ; 9: 718947, 2021.
Article in English | MEDLINE | ID: mdl-34589486

ABSTRACT

Melanoma is one of the most immunogenic tumors and has the highest potential to elicit specific adaptive antitumor immune responses. Immune cells induce apoptosis of cancer cells either by soluble factors or by triggering cell-death pathways. Melanoma cells exploit multiple mechanisms to escape immune system tumoricidal control. FKBP51 is a relevant pro-oncogenic factor of melanoma cells supporting NF-κB-mediated resistance and cancer stemness/invasion epigenetic programs. Herein, we show that FKBP51-silencing increases TNF-related apoptosis-inducing ligand (TRAIL)-R2 (DR5) expression and sensitizes melanoma cells to TRAIL-induced apoptosis. Consistent with the general increase in histone deacetylases, as by the proteomic profile, the immune precipitation assay showed decreased acetyl-Yin Yang 1 (YY1) after FKBP51 depletion, suggesting an impaired repressor activity of this transcription factor. ChIP assay supported this hypothesis. Compared with non-silenced cells, a reduced acetyl-YY1 was found on the DR5 promoter, resulting in increased DR5 transcript levels. Using Crispr/Cas9 knockout (KO) melanoma cells, we confirmed the negative regulation of DR5 by FKBP51. We also show that KO cells displayed reduced levels of acetyl-EP300 responsible for YY1 acetylation, along with reduced acetyl-YY1. Reconstituting FKBP51 levels contrasted the effects of KO on DR5, acetyl-YY1, and acetyl-EP300 levels. In conclusion, our finding shows that FKBP51 reduces DR5 expression at the transcriptional level by promoting YY1 repressor activity. Our study supports the conclusion that targeting FKBP51 increases the expression level of DR5 and sensitivity to TRAIL-induced cell death, which can improve the tumoricidal action of immune cells.

14.
Cells ; 10(9)2021 09 09.
Article in English | MEDLINE | ID: mdl-34572014

ABSTRACT

Despite Glioblastoma (GBM) frequently expressing programmed cell death ligand-1 (PD-L1), treatment with anti-programmed cell death-1 (PD1) has not yielded brilliant results. Intratumor variability of PD-L1 can impact determination accuracy. A previous study on mouse embryonic fibroblasts (MEFs) reported a role for cyclin-D in control of PD-L1 expression. Because tumor-cell growth within a cancer is highly heterogeneous, we looked at whether PD-L1 and its cochaperone FKBP51s were influenced by cell proliferation, using U251 and SF767 GBM-cell-lines. PD-L1 was measured by Western blot, flow cytometry, confocal-microscopy, quantitative PCR (qPCR), CCND1 by qPCR, FKBP51s by Western blot and confocal-microscopy. Chromatin-Immunoprecipitation assay (xChIp) served to assess the DNA-binding of FKBP51 isoforms. In the course of cell culture, PD-L1 appeared to increase concomitantly to cyclin-D on G1/S transition, to decrease during exponential cell growth progressively. We calculated a correlation between CCND1 and PD-L1 gene expression levels. In the temporal window of PD-L1 and CCND1 peak, FKBP51s localized in ER. When cyclin-D declined, FKBP51s went nuclear. XChIp showed that FKBP51s binds CCND1 gene in a closed-chromatin configuration. Our finding suggests that the dynamism of PD-L1 expression in GBM follows cyclin-D fluctuation and raises the hypothesis that FKBP51s might participate in the events that govern cyclin-D oscillation.


Subject(s)
B7-H1 Antigen/metabolism , Brain Neoplasms/metabolism , Cyclin D/metabolism , Glioblastoma/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Fibroblasts/metabolism , Flow Cytometry/methods , Humans
15.
Reprod Biol Endocrinol ; 19(1): 116, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34311751

ABSTRACT

BACKGROUND: Which fertilization method, between ICSI and IVF in split insemination treatments, has the highest clinical efficiency in producing clinically usable blastocyst? METHODS: 211 infertile couples underwent split insemination treatments for a non-severe male factor. 1300 metaphase II (MII) oocytes were inseminated by conventional IVF and 1302 MII oocytes were micro-injected with the same partner's semen. Embryo development until blastocyst stage on day V and clinical outcomes were valuated trough conventional key performance indicators (KPI), and new KPIs such as blastocyst rate per used MII oocytes and the number of MII oocytes to produce one clinically usable blastocyst from ICSI and IVF procedures. RESULTS: The results were  globally analyzed and according to ovarian stimulation protocol, infertility indication, and female age. The conventional KPI were online with the expected values from consensus references. From global results, 2.3 MII oocyte was needed to produce one clinically usable blastocyst after ICSI compared to 2.9 MII oocytes in IVF. On the same way, more blastocysts for clinical use were produced from fewer MII oocytes in ICSI compared to IVF in all sub-groups. CONCLUSIONS: In split insemination treatments, the yield of clinically usable blastocysts was always superior in ICSI compared to IVF. The new KPI "number of needed oocytes to produce one clinically usable embryo" tests the clinical efficiency of the IVF laboratory.


Subject(s)
Blastocyst/physiology , Infertility/epidemiology , Infertility/therapy , Live Birth/epidemiology , Oocytes/physiology , Sperm Injections, Intracytoplasmic/methods , Adult , Female , Fertilization in Vitro/methods , Fertilization in Vitro/trends , Humans , Male , Pregnancy , Sperm Injections, Intracytoplasmic/trends , Young Adult
16.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917598

ABSTRACT

Magnetic resonance imaging (MRI) is the gold standard for glioblastoma (GBM) patient evaluation. Additional non-invasive diagnostic modalities are needed. GBM is heavily infiltrated with tumor-associated macrophages (TAMs) that can be found in peripheral blood. FKBP51s supports alternative-macrophage polarization. Herein, we assessed FKBP51s expression in circulating monocytes from 14 GBM patients. The M2 monocyte phenotype was investigated by qPCR and flow cytometry using antibodies against PD-L1, CD163, FKBP51s, and CD14. MRI assessed morphologic features of the tumors that were aligned to flow cytometry data. PD-L1 expression on circulating monocytes correlated with MRI tumor necrosis score. A wider expansion in circulating CD163/monocytes was measured. These monocytes resulted in a dramatic decrease in patients with an MRI diagnosis of complete but not partial surgical removal of the tumor. Importantly, in patients with residual tumor, most of the peripheral monocytes that in the preoperative stage were CD163/FKBP51s- had turned into CD163/FKBP51s+. After Stupp therapy, CD163/FKBP51s+ monocytes were almost absent in a case of pseudoprogression, while two patients with stable or true disease progression showed sustained levels in such circulating monocytes. Our work provides preliminary but meaningful and novel results that deserve to be confirmed in a larger patient cohort, in support of potential usefulness in GBM monitoring of CD163/FKBP51s/CD14 immunophenotype in adjunct to MRI.


Subject(s)
Brain Neoplasms , Flow Cytometry , Glioblastoma , Magnetic Resonance Imaging , Monocytes/metabolism , Real-Time Polymerase Chain Reaction , Adult , Aged , Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , B7-H1 Antigen/blood , Brain Neoplasms/blood , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Female , Glioblastoma/blood , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Humans , Lipopolysaccharide Receptors/blood , Male , Middle Aged , Prospective Studies , Receptors, Cell Surface/blood , Tacrolimus Binding Proteins/blood
17.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33914044

ABSTRACT

TGFß is essential for the generation of anti-tumor Th9 cells; on the other hand, it causes resistance against anti-tumor immunity. Despite recent progress, the underlying mechanism reconciling the double-edged effect of TGFß signaling in Th9-mediated cancer immunotherapy remains elusive. Here, we find that TGFß-induced down-regulation of bifunctional apoptosis regulator (BFAR) represents the key mechanism preventing the sustained activation of TGFß signaling and thus impairing Th9 inducibility. Mechanistically, BFAR mediates K63-linked ubiquitination of TGFßR1 at K268, which is critical to activate TGFß signaling. Thus, BFAR deficiency or K268R knock-in mutation suppresses TGFßR1 ubiquitination and Th9 differentiation, thereby inhibiting Th9-mediated cancer immunotherapy. More interestingly, BFAR-overexpressed Th9 cells exhibit promising therapeutic efficacy to curtail tumor growth and metastasis and promote the sensitivity of anti-PD-1-mediated checkpoint immunotherapy. Thus, our findings establish BFAR as a key TGFß-regulated gene to fine-tune TGFß signaling that causes Th9 induction insensitivity, and they highlight the translational potential of BFAR in promoting Th9-mediated cancer immunotherapy.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Apoptosis Regulatory Proteins/immunology , Membrane Proteins/immunology , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction/immunology , Transforming Growth Factor beta/immunology , Animals , Cell Differentiation/immunology , Down-Regulation/immunology , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology
18.
J Cardiovasc Transl Res ; 14(6): 1104-1113, 2021 12.
Article in English | MEDLINE | ID: mdl-33721196

ABSTRACT

Thrombocytopenia after TAVI is common and clinically detrimental. Retrospectively, we observed Portico recipients had a more profound platelet drop than Evolut recipients. We thus investigated periprocedural platelet damage and/orpro-inflammatory state in 64 TAVI recipients at baseline and after implantation. Platelet damage was assessed by annexin V staining and monocyte-phagocytic phenotype was assessed according to CD14/CD36 expression. Serum cytokines were measured in 20 patients. The formaldehyde-based storage solution altered platelets. When, before being loaded onto the delivery system, Portico underwent one additional flushing to those recommended, the receiving patients showed thrombocytopenia, platelet damage, and CD36-monocyte count were mitigated. A general increase in IL-6 was recorded in overall TAVI recipients, but a high serum level of IL-8, a potent thrombocytopenia inducer, was measured in Portico recipients only, including those with extra-rinsed valve. Our study suggests a platelet-injury effect by storage-solution and generates the hypothesis of a role for the biomaterial in stimulating innate-immunity. Larger prospective studies are needed. Graphical Abstract.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Postoperative Complications/etiology , Thrombocytopenia/etiology , Transcatheter Aortic Valve Replacement/instrumentation , Aged, 80 and over , Biomarkers/blood , Cytokines/blood , Female , Humans , Italy , Male , Prosthesis Design , Retrospective Studies
20.
Br J Cancer ; 122(12): 1782-1790, 2020 06.
Article in English | MEDLINE | ID: mdl-32317723

ABSTRACT

BACKGROUND: FKBP51 immunophilin is abundantly expressed by immune cells. Co-inhibitory immune receptor signalling generates the splicing isoform FKBP51s. Tregs stained by FKBP51s are increased in melanoma patients and their counts are associated with anti-CTLA-4 response. An expansion of FKBP51s+PD-L1+ monocytes was measured in a group of non-responding patients to anti-CTLA-4. The aim of this work was to confirm the predictive value of response of FKBP51s+Tregs in a cohort of patients undergoing anti-PD1 treatment and shed light on a monocyte subset co-expressing PD-L1/FKBP51s. METHODS: Co-cultures of organoids and autologous lymphocytes were used to confirm that tumour T-cell interaction can induce FKBP51s. PBMC immunophenotype and flow cytometry served to assess and monitor FKBP51s+Treg and FKBP51s+PD-L1+ monocytes in 22 advanced melanoma patients treated with anti-PD1. Silencing and overexpression of FKBP51s in human macrophages served to address the protein role in the tolerant macrophages' behaviour. RESULTS: FKBP51s+Tregs count was increased in responders and had a prognostic value. Non-responders showed an early increase in FKBP51s+ PD-L1+ monocytes during anti-PD1 treatment. Manipulation of FKBP51s modulated the macrophage-phenotype, with forced protein expression promoting aspects associated with tolerance. CONCLUSIONS: FKBP51s may guide in the selection and monitoring of melanoma patient candidates to immune-checkpoint-targeted therapy. Manipulation of FKBP51s may overcome resistance.


Subject(s)
Drug Resistance, Neoplasm/immunology , Macrophages/immunology , Melanoma/immunology , Tacrolimus Binding Proteins/metabolism , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Macrophage Activation/immunology , Macrophages/metabolism , Male , Melanoma/drug therapy , Melanoma/metabolism , Middle Aged , Nivolumab/therapeutic use , Protein Isoforms , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...